您当前的位置: 浮选机 »硫化矿浮选吸附量测试
 

硫化矿浮选吸附量测试

发布时间:2018-03-13    文章来源:山东浮选机厂家    作者:lynn

了解捕收剂的结构与浮选性能的关系,对探索浮选机理、指导设计和合成新型捕收剂具有非常重要的作用,这是人们研究硫化矿浮选机理的一个重要方向。

胡岳华等人将分子轨道理论和能带理论应用于硫化矿浮选机理研究,发现硫化矿物表面电子结构中价带和导带能级大小影响最终表面产物形式,药剂分子的前线轨道是决定药剂选择性的关键因索之一。

(3)表面化学反应。即化学吸附进一步发展,常常在矿物表面发生化学反应。表面化学反应与化学吸附的主要区别是前者的反应产物在表面上构成独立的相。

(4)同名离子的交换吸附。这个概念是从瓦克和柯克斯提出的离子交换模型演变而来,主要是说明药剂在矿浆中以离子的形式作用,并且与水中的0H-发生竞争吸附,由此决定浮选过程发生与否。

(5)药剂在矿物表面或矿浆中反应产物的吸附。研究发现,浮选药剂与矿物表面的作用不像上面讨论的那样简单,不仅药剂原有组分与矿物本身作用,在多数情况下还包括一系列复杂的反应过程。例如,矿物与空气成分反应,与矿浆中氧及各种难免成分的反应等,使矿物表面发生改变;浮选药剂与矿物作用时,还包括许多副反应、氧化还原反应、催化反应以及在矿物表面不同位置和不同阶段的各种类型的反应等。

(6)双电层吸附。双电层吸附理论认为在矿浆体系中矿物-水界面荷电后形成阳离子层和阴离子层,目前被广泛接受的是斯特恩双电层理论。在这一吸附模型中,捕收剂浓度低时以单个离子的状态吸附,浓度高时以半胶团状态吸附,一部分未解离的分子靠同矿物间及非极性基间的范德华力与捕收剂离子共吸附于矿物表面;当捕收剂离子烃链较大、链间作用较强或极性基与矿物间有化学亲和力时,也即有所谓的特性吸附力时,不但可在紧密层中吸附,而且吸附量可大至超过内层的相反电荷,从而强烈改变电位大小,基至引起表面电荷符号的改变。

矿物与药剂作用机理的研究有很多,但大多是通过等温吸附曲线、动电位、接触角、红外光谱、x光电子能谱、荧光探针、原子力显微镜等方法研究得到的。以上这些方法都不能对药剂在矿物表面吸附的全过程进行完整的实时的测定。石英晶体微天平QCM-D可以对药剂在矿物表面的吸附全过程进行实施测定,而且作为压电效应在质量测定中的高精度应用技术,QCM-D的测定精度可以达到纳米级。它不仅可以得到表面吸附膜的质量变化和厚度变化,还可以得到该吸附膜的黏弹性质并可推测该吸附膜的结构特征,从而得到药剂的作用吸附机理和规律。寇珏等人的研究结果表明:QCM-D比Zeta电位更精确和明显地测定出不同胺类捕收剂在石英表面的吸附差别,因此对研究浮选药剂的吸附机理有重大的参考价值。

高志勇借助原子力显微镜(AFM)观察并研究了三种含钙矿物晶体常见暴露面的微观形貌,并借此讨论了晶面的解理特性和溶解行为。然后通过接触角测量,采用三种探针液体蒸馏水、甲酰胺、二碘甲烷研究了三种含钙矿物晶体常见暴露面的润湿性。借助几何平均方程等几种表面能的拟合计算方法,得到了常见暴露面的表面自由能,并分析了表面自由能及其分量和表面断链键性质的关系。

近年来,引人了量子化学计算方法和动力学模拟方法,以便更好、更快地了解浮选和浮选机理。王振等人通过对捕收剂分子在矿物解理面作用进行分子动力学模拟发现,CPC阳离子在氧化钼{100}、磷石灰{010}表面的吸附能力分别为448.86kJ/mol和反应等420.16kJ/mol,表明CPC阳离子更易与氧化钼颗粒发生吸附。郭静楠等人采用分子动力学模拟研究了分子与一水硬铝石和高岭石表面的相互作用,结果表明药剂分子与一水硬铝石晶面实习紧密结合。

Andrw Hungl计算了甲基黄药离子的结构和性质特点,并研究了它在Fes2{100}和{111}面的吸附行为,结果表明甲基黄药容易和黄铁矿{100}面上的四配位铁原子、{111}面上的桥位硫原子发生作用,黄药将在含有缺陷的黄铁矿表面发生化学吸附。徐斌通过对S-苄基-N-乙氧羰基硫氮酯(BITCM)在矿物表面吸附的分子模拟研究发现:通过吸附能的比较可知,BITCM分子在方铅矿{100}面、闪锌矿{110}面、黄铁矿{100}面上的最稳定吸附构型均为羰基硫和羰基氧同时吸附,且BITCM在方铅矿表面的吸附最容易发生。

综合诊断红外反射技术能直观地测量矿物表面吸附浮选药剂粒子的种类和数量。黄铁矿与闪锌矿接触时,黄药在黄铁矿表面的吸附完全受到抑制,而闪锌矿表面形成黄原酸铅的多分于层结构。黄铁矿与黄铜矿接触时,双黄药在黄铁矿表面的生成受到抑制,而黄铜矿表面的双黄药的生成量増加了2.5倍。

近年国内对于硫化矿物的选别逐渐增多,浮选法是硫化矿选别的重要方法,而磨矿质量则是影响硫化矿浮选效率的关键。磨矿过程直接影响硫化矿物的表面形态与性质、矿浆的溶液化学性质和硫化矿物的浮选行为,进而影响硫化矿物浮选的指标。因此,本文就不同磨矿方式对硫化矿物的浮选效率的影响。

大多数的硫化矿物都是良好的半导体,其浮选过程是一个复杂的电化学过程。在磨矿—浮选体系中,不同硫化矿物和磨矿介质在矿浆中的表面静电位(腐蚀电位)不同,造成不同硫化矿物之间以及矿物与磨矿介质之间相互接触时,发生迦伐尼电偶作用,静电位较低的物质发生阳极氧化反应,而溶液中的氧在静电位较高的物质表面发生阴极还原反应,对矿物的表面性质产生一定的影响。

由表1可知,与硫化矿物的静电位相比,低碳钢钢球和铁镍合金钢球的静电位均低很多,表明在球磨机磨矿过程中由于形成迦伐尼电偶作用,剧烈的阳极氧化反应将在钢球表面发生,同时氧的还原反应将在静电位很高的黄铁矿表面发生;此外,若黄铁矿与其它硫化矿物处于电接触状态,则另一个硫化矿物的氧化将会被加速。

在硫化矿矿浆体系中,各种硫化矿物之间、磨矿介质与硫化矿物之间存在的伽伐尼电偶作用导致磨矿介质腐蚀,腐蚀形成的铁的氧化物或氢氧化物吸附或沉积在硫化矿物表面将会显著地影响硫化矿物的浮游行为。此外,其他金属离子如Cu2+的氧化也将对其他硫化矿物的浮选产生影响。国内外在这方面已做了很多相关研究。

版权所有©山东浮选机厂家地址:山东省烟台市